КАЛЬЦИЙ ПАРМА

Набор реагентов для определения содержания кальция в сыворотке, плазме крови и моче.

Код №	Фасовка (мл)	Количество определений (1000/200 мкл)
10618	1x80, 1x20	100/500
20618	5x80, 1x100	500/2500
РУ № ФСР 2011/11178 от 28/06/2011 г.		Приказ № 3742-Пр/11 от 28/06/2011 г., № 8295 от 12/12/2014 г.

ПРИНЦИП

Ион кальция реагирует с о-крезолфталеинкомплексоном в щелочной среде и формирует комплекс красного цвета, интенсивность которого пропорциональна концентрации кальция в пробе.

СОСТАВ НАБОРА И УСЛОВИЯ ХРАНЕНИЯ

Реагент 1 (Р1)	Моноэтаноламиновый буф	рер,	0,4 моль/л
Буфер	детергенты		
Реагент 2 (Р2)	о-крезолфталеинкомплексон		0,36 ммоль/л
Цветной реагент	8-гидроксихинолин		21 ммоль/
Стандарт 3 мл	Кальций хлористый		2,5 ммоль/л

Набор необходимо хранить в упаковке предприятия изготовителя при 18-25°С в течение всего срока годности – 18 месяцев.

ПОДГОТОВКА РАГЕНТОВ И ИХ СТАБИЛЬНОСТЬ

Все реагенты готовы к использованию. Реагенты 1 и 2 после вскрытия стабильны до конца срока годности набора при 18-25°С. Стандарт после вскрытия флакона стабилен при 2-8°С не более 1 месяца.

АНАЛИТИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Линейность от 0,5 ммоль/л до 4,0 ммоль/л. Коэффициент вариации – не более 3%.

ИССЛЕДУЕМЫЙ МАТЕРИАЛ

Сыворотка или гепаринизированная плазма, моча.

ПРОЦЕДУРА

Длина волны : 570 нм (540-590) нм

Оптический путь : 1 см Температура : 18-25°C

Холостая проба : против реагента. На серию измерений требуется только одна холостая

проба.

Вариант 1 (с приготовлением монореагента)

Смешать необходимые количества реагентов 1 и 2 в соотношении 1:4. Монореагент стабилен не более 2 суток при 2-8°C.

Внести	Холостая проба	Стандарт	Опытная проба
БПССТИ	лолостал прооц	Стапдарт	Опытпал проса
Сыворотка (плазма)	-	-	10 мкл
Стандарт	-	10 мкл	-
Монореагент	1000 мкл	1000 мкл	1000 мкл

Вариант 2 (биреагентная схема)

Внести	Холостая проба	Стандарт	Опытная проба
Сыворотка (плазма)	-	=	10 мкл
Стандарт	-	10 мкл	-
Реагент 1	800 мкл	800 мкл	800 мкл
Реагент 2	200 мкл	200 мкл	200 мкл

В обоих вариантах реакционную смесь перемешать и инкубировать 5 минут при комнатной температуре. Измерить оптическую плотность пробы (А пробы) и стандарта (А стандарта) против холостой пробы.

Окраска стабильна 60 минут с момента смешивания.

РАСЧЕТ

$$C = C_{\text{стандарта}} \times \frac{A_{\text{пробы}}}{A_{\text{стандарта}}}$$

Если концентрация кальция в пробе превышает 5,0 ммоль/л, образец развести дистиллированной водой в 2 раза, анализ повторить, полученный результат умножить на 2.

НОРМАЛЬНЫЕ ВЕЛИЧИНЫ

2,25-2,75 ммоль/л

ПРИМЕЧАНИЯ

- 1. Кальций широко распространенный ион, загрязненная стеклянная посуда является главным источником погрешностей в этом методе. Рекомендуется использование одноразовой пластиковой посуды.
- 2. Хелатирующие реагенты, такие как ЭДТА, которые могут присутствовать в моющих средствах, тормозят развитие цветного комплекса.

КОНТРОЛЬ КАЧЕСТВА

Правильность проверена при помощи контрольных сывороток Lyphochek кат. №№ С-310-5 и С-315-5 (Bio-Rad, США).

ОСНОВНЫЕ ПАРАМЕТРЫ ПРОГРАММИРОВАНИЯ ДЛЯ БИОХИМИЧЕСКИХ АНАЛИЗАТОРОВ

CONCENSION OF ANIMAL CONTINUE OF ANIMAL PUR BROWNING TECHNICATION OF				
Тип анализатора	Любой			
Метод измерения	Конечная точка			
Длина волны, нм	570 (540-590)			
Измерение против	Реагента (рабочего реагента)			
Температура реакции	18-25°C, 37°C			
Единица измерения	ммоль/л			
Число знаков после запятой	2			
Концентрация стандарта, ммоль/л	2,5			
Соотношение реагент/проба	100:1			
Время реакции, сек	300			
Верхний предел абсорбции реагента против воды, А	2,0			
Нижний предел абсорбции реагента против воды, А	0			
Границы линейности	0,5-4			
Максимум нормы	2,75			
Минимум нормы	2,25			

ЛИТЕРАТУРА

- 1. Stern, J. and Lewis W.H.P. Clin. Chem. Acta 2,576 (1957)
- 2. Baginski ES, at al. Clin. Chem. Acta 46, 46 (1973)

